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The correlation functions of an arbitrary number of boundary monomers in a system of close-packed dimers
on a square lattice are computed exactly in the scaling limit. The equivalence of the 2n-point correlation
functions with those of a complex free fermion is proved, thereby reinforcing the description of the monomer-
dimer model by a conformal free-field theory with central charge c=1.
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I. INTRODUCTION

The dimer model was originally introduced to describe
physical adsorption of diatomic molecules on crystal sur-
faces �1�. The first studies of the dimer model are dated the
in the early 1960s, with pioneering works by Kasteleyn �2�,
Fisher �3�, Temperley and Fisher �4�, Ferdinand �5�, and Wu
�6�, who studied the number of close-packed dimer configu-
rations on specific �mostly square� finite bipartite lattices.
Soon after that, correlations between dimers and monomers
on the square lattice were examined in �7�. The effects
caused by the insertion of monomers on the square lattice
have been reconsidered in a number of recent works �8–13�.
Dimer and monomer correlations have also been reexamined
recently, with significantly different conclusions, on the tri-
angular lattice �a nonbipartite graph� in �14�.

A close-packed dimer configuration on a square grid is an
arrangement of dimers such that a dimer covers two adjacent
sites and every site is covered by exactly one dimer. As a
generalization, one can look at the dimer configurations
when some sites, called monomers, are not allowed to be
covered by dimers. Corresponding to these arrangements of
monomers and dimers, one considers the partition function

Z��wh,wv�z1, . . . ,zN� = �
coverings

wh
nhwv

nv. �1.1�

It counts the number of dimer coverings in the presence of N
monomers located at positions z1 , . . . ,zN, in the bulk or on
boundaries, with weights wh and wv assigned to horizontal
and vertical dimers. As the number nh+nv of dimers is fixed,
the partition function essentially depends on wh ,wv through
the ratio wh /wv only.

The dimer model belongs to the class of so-called free-
fermion models �15�. It is well known that the partition func-
tion of the free-fermion models admits a representation in
terms of fermionic Gaussian integrals, which leads to deter-
minant expressions for the partition and correlation func-
tions. Despite the simple form of the lattice action in the
free-fermion representation, the evaluation of correlation
functions for certain physical observables can be more com-
plicated because local variables correspond often to nonlocal
fermion correlators. As illustrated in �7�, the monomer-
monomer correlations in the dimer model need typically
nonlocal computations if monomers are located in the bulk
of the lattice. However the situation simplifies significantly

for boundary monomers. In this article, we take advantage of
this simplification and compute all monomer correlations ex-
actly, in the scaling limit. We will show that in the continuum
limit, the correlation functions for boundary monomers can
be expressed in terms of complex free fermions located at
sites occupied by the monomers. This implies that the bound-
ary monomer degrees of freedom are described by a confor-
mal field theory with central charge c=1.

Our result complements previous results related to the de-
scription of the general dimer model by a conformal field
theory. If a conformal field theory with central charge c=
−2 accounts well for the dimer degrees of freedom �16�, it
seems that the full monomer-dimer model should correspond
to a conformal theory with c=1. An early indication of this
can be traced to the work of Au-Yang and Perk �17�, who
noted a close relationship between the two-monomer cor-
relator computed by Fisher and Stephenson �7� and the
squared correlator of two Ising spins, equivalently the cor-
relator in a doubled Ising model. Likewise dimer correlations
on the square lattice have been more recently reinterpreted as
correlators of two uncoupled massless Majorana fermions
�and by massive Majorana fermions in the perturbation away
from the square lattice to the triangular lattice� by Fendley et
al. �14�. More generally, Kenyon �18� has shown that a quan-
tity associated with a dimer configuration, called the height
function, converges in the scaling limit to a Gaussian free
field �or free boson�, which, like the complex free fermion,
corresponds to a conformal theory with central charge c=1.
The connection with a c=1 conformal theory has also been
made by Papanikolaou et al. in �19�, which in addition dis-
cusses some specific operators of the dimer model. The rela-
tion between the dimer model and free fermions was reex-
amined very recently by Dijkgraaf et al. �20�.

II. GENERAL SETTING

Here we briefly recall the way the partition function can
be calculated when the graph is a finite portion of a square
lattice. In the following, we set wh=wv=1 as we are not
interested in the directional properties of the dimer cover-
ings.

The simplest and best understood situation is when all
sites of the domain L must covered by dimers, the so-called
close-packed limit. In this case, the partition function, which
simply counts the number of dimer configurations so that
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every site of L is covered by one dimer, can be expressed as
the Pfaffian of an antisymmetric matrix K:

ZL
�0� = Pf K = + �det K . �2.1�

The sign is chosen so that the partition function is positive,
and the matrix K is a weighted adjacency matrix of L. Each
term in the expansion of the Pfaffian is naturally associated
with a dimer covering, but the entries of K have to be suit-
ably chosen so that each covering contributes 1 to the parti-
tion function.

There are different choices for K, but a convenient one for
what follows is the matrix originally considered by Kaste-
leyn. K is an oriented adjacency matrix for L, so that Kij
=0 if the sites i , j are not nearest neighbors and Kij = �1
otherwise. The signs are given pictorially in Fig. 1: an arrow
from i to j indicates that Kij = +1 and Kji=−1. The essential
property of K is that the product of entries around any el-
ementary cell of L is equal to −1 :

Ki1i2
Ki2i3

Ki3i4
Ki4i1

= − 1, for any cell
i1

i4
� i2

i3
. �2.2�

As K is closely related to the Laplacian on L, standard tech-
niques like Fourier series can be used to compute the deter-
minant of K and then its Pfaffian.

Monomers are sites which cannot be covered by dimers.
Thus dimer configurations on L in the presence of monomers
at z1 ,z2 , . . . ,zN are close-packed dimer coverings of
L \ �z1 ,z2 , . . .	.

If all of the N monomers are on the boundary of L, the
matrix K�z1 ,z2 , . . .� defined from K by removing the rows
and columns labeled by the sites z1 ,z2 , . . . is the Kasteleyn
matrix for L \ �z1 ,z2 , . . .	. As it still satisfies the property
�2.2�, one has

ZL
�N��z1,z2, . . .� = Pf K�z1,z2, . . .� = + �det K�z1,z2, . . .� .

�2.3�

The monomer correlations are then defined by the ratios

C�z1,z2, . . .� 

ZL

�N��z1,z2, . . .�
ZL

�0� =
�det K�z1,z2, . . .�

�det K
.

�2.4�

We are interested in computing these ratios in the thermody-
namic limit. It is then much more convenient to express
K�z1 ,z2 , . . .�=K+B�z1 ,z2 , . . .� as a finite-rank perturbation of
K, localized around the monomer positions. If indeed B has

rank N �that is, Bij =0 except if i , j are in a set of N sites�, the
ratio of infinite-dimensional determinants,

ZL
�N��z1,z2, . . .�

ZL
�0� = �det K−1K�z1,z2, . . .� = �det�I + K−1B� ,

�2.5�

reduces to a finite, rank-N determinant �which, however, in-
volves entries of the infinite-dimensional matrix K−1�.

The defect matrix B has to satisfy two requirements: �i� if
k is a neighboring site of a monomer located at z, then Bz,k
=−Kz,k=−Bk,z so that z is effectively cut off from the rest of
the grid, and �ii� the restriction of B to the monomer sites
z1 ,z2 , . . . must have a determinant equal to 1 �the simplest
solution is to set Bzi,zi

=1, but this is not always the most
convenient way; see Sec. IV�. All other entries of B are equal
to 0. The rank of B increases linearly with the number of
monomers and so does the size of the determinant.

When some of the monomers are away from the bound-
ary, the situation changes dramatically. Removing a non-
boundary site from L creates a new elementary cell, around
which the product of the restricted K matrix elements is not
equal to −1. This can be remedied by changing the signs of K
along a path going from one monomer to another monomer.
This in effect introduces a nonlocal defect matrix and com-
plicates the calculation since the size of the determinant in-
creases with the distance between the monomers. To date, the
only known exact result on the square lattice is the old result
by Fisher and Stephenson �7�, who proved that the two-point
correlation of bulk monomers in the scaling limit decays like
r−1/2. In contrast, the monomer and dimer correlations decay
exponentially on the triangular lattice �14�. There are indica-
tions that this last behavior holds on nonbipartite graphs.

III. ISOLATED MONOMERS ON A BOUNDARY

Our purpose is to calculate the monomer correlations
�2.5� for an arbitrary number of isolated monomers on the
boundary of the discrete upper half-plane �UHP�, with no
monomer away from the boundary. For definiteness, we take
the boundary to be the line y=1, so that the discrete UHP
corresponds to ��x ,y� :x�Z ,y�Z�0	. The positions of the
monomers along the boundary are denoted by �xi ,1�, and we
are interested in the scaling regime where all distances xij

xi−xj are large. We assume the xi are ordered from left to
right, so that xij �0 for i� j.

The first ingredient we need is the inverse of K. As men-
tioned in the previous section, the matrix K itself is defined
from Fig. 1 where the rectangle is extended to the UHP. The
orientation of all horizontal bonds is to the right, while that
of the vertical bonds alternates; we fix the reference point by
deciding that the vertical bonds on the line x=0 are oriented
upwards. The matrix is then given by

K�x,y�,�x�,y�� = ��x,x�−1 − �x,x�+1��y,y�

+ �− 1�x�x,x���y,y�−1 − �y,y�+1� . �3.1�

It is instructive and easy to compute the square of K:

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �
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FIG. 1. Orientation of the bonds defining the signs in the Kaste-
leyn matrix K.
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�− K2�ij = �number of nearest neighbors of i , for i = j ,

− 1, if i − j = � �2,0� or � �0,2� ,

0, otherwise.
� �3.2�

One sees that −K2 connects sites within each of the four
sublattices corresponding to the parity of the x coordinates
and of the y coordinates, and that its restriction to any one of
these is equal to a specific Laplacian. On the odd-odd and
even-odd sublattices, the Laplacian is subjected to a closed-
boundary condition since the sites on the boundary �y=1�
have three nearest neighbors. On the other two sublattices,
which have the line y=2 as boundary, along which the sites
have four nearest neighbors, the Laplacian is subjected to the
open-boundary condition. We can write

− K2 = �odd,odd
cl

� �even,odd
cl

� �odd,even
op

� �even,even
op .

�3.3�

This allows to find the inverse of K,

K−1 = − �Godd,odd
cl

� Geven,odd
cl

� Godd,even
op

� Geven,even
op �K ,

�3.4�

in terms of the well-known Green’s matrices G=�−1. The
Green’s matrices Gcl and Gop are related to the inverse La-
placian G on the full �discrete� plane by standard formulas:

Gcl�x − x�;y,y�� 
 G�x,y�,�x�,y��
cl

= G�x − x�,y − y�� + G�x − x�,y + y� − 1� ,

�3.5�

Gop�x − x�;y,y�� 
 G�x,y�,�x�,y��
cl

= G�x − x�,y − y�� − G�x − x�,y + y�� .

�3.6�

One can now write the inverse of K explicitly:

K�x,y�,�x�,y��
−1 = �Gcl� x−x�−1

2 ; y+1
2 , y�+1

2 � − Gcl� x−x�+1
2 ; y+1

2 , y�+1
2 �� ,

if �x − x��yy� = 1 mod 2,

=�Gop� x−x�−1
2 ; y

2 , y�
2 � − Gop� x−x�+1

2 ; y
2 , y�

2 �� ,

if �x − x���y − 1��y� − 1� = 1 mod 2,

=�− 1�x�Gcl� x−x�
2 ; y+1

2 , y�+2
2 � − Gcl� x−x�

2 ; y+1
2 , y�

2 �� ,

if �x − x� − 1�y�y� − 1� = 1 mod 2,

=�− 1�x�Gop� x−x�
2 ; y

2 , y�+1
2 � − Gop� x−x�

2 ; y
2 , y�−1

2 �� ,

if �x − x���y − 1�y� = 1 mod 2.

=0, otherwise �when x − x�

and y − y� have the same parity� . �3.7�

By using relations �3.5� and �3.6�, one may check that K−1 is
antisymmetric.

We are now ready to compute the relevant determinants
�2.5�. If there are N monomers on the boundary, the B matrix
is 4N dimensional. A possible choice is to write it as the
direct sum of N 4�4 blocks B1�xi�, one for each monomer,
so that B= � iB1�xi�, with

B1�x� =

1 1 − �− 1�x − 1

− 1 0 0 0

�− 1�x 0 0 0

1 0 0 0
� , �3.8�

in the basis where the indices 1, 2, 3, and 4 correspond,
respectively, to the monomer itself, its left neighbor, its up-
per neighbor, and its right neighbor.

Using this explicit form of B as well as the inverse of K,
one may easily compute the correlation functions, given by

C�x1,x2, . . . ,xN� 

Z�x1,x2, . . . ,xN�

Z
= �det�I + K−1B� .

�3.9�

For large distances �xij��1, the asymptotic form of these
correlators may be obtained by using the following expan-
sions of the Green matrix on the plane:

G�m,k� = G�m,0� −
k2

4	m2 +
k4 − 3k3

8	m4 + ¯ , k 
 m ,

�3.10�

G�m,0� = −
1

2	
ln�m� + ¯ . �3.11�

We have computed explicitly the first few correlators and
found the following expressions. The one- and three-point
functions are identically zero,

C�x1� = C�x1,x2,x3� = 0, �3.12�

as one would expect. On a finite rectangular grid �with an
even number of sites�, there must be an even number of
monomers since, otherwise, the rest of the rectangle cannot
be covered with dimers.

The two-point function is equal to, at dominant order,
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C�x1,x2� = �−
2

	x12
+ ¯ , if x12 is odd,

0, if x12 is even.
� �3.13�

Again this characteristic difference in the parity of the dis-
tance between the two monomers is expected, since on a
finite rectangle, there must be an equal number of monomers
on the even sublattice as on the odd sublattice.

For alternating even and odd monomer positions xi �that
is, all xi−xi+1 are odd�, the four- and six-point functions are
equal to

C�x1, . . . ,x4� =
4

	2� 1

x12x34
+

1

x14x23
� + ¯ , �3.14�

C�x1, . . . ,x6� = −
8

	3� 1

x12x34x56
+

1

x12x36x45
+

1

x14x23x56

−
1

x14x25x36
+

1

x16x23x45
+

1

x16x25x34
� + ¯ .

�3.15�

In the scaling limit, these correlators exactly match those of
a complex chiral free fermion �,

lim
scaling

C�x1, . . . ,x2n�

= ���x1��†�x2���x3��†�x4� ¯ ��x2n−1��†�x2n�� ,

�3.16�

if the two-point functions are normalized as

���x��†�y�� = ��†�x���y�� = −
2

	�x − y�
, �3.17�

���x���y�� = ��†�x��†�y�� = 0. �3.18�

Physically the charged fermions �
�e and �†
�o can be
interpreted, respectively, as the insertion of a monomer at an
even position and at an odd position �or vice versa�, so that a
globally neutral correlator indicates an equal number of even
and odd monomers. Their real and imaginary parts �1

= 1
�2

��+�†� and �2= 1
i�2

��−�†� can be viewed as two un-
coupled Ising Majorana fermions which form a chiral con-
formal field theory with c=1.

We prove, in the next section, the equality �3.16� for an
arbitrary value of n.

IV. BOUNDARY MONOMER CORRELATORS

We start with the cases where the correlators do not van-
ish identically: we place 2n monomers on the boundary, lo-

cated at �xi ,1�, n of which are at even �odd� positions. With-
out loss of generality, one may choose x1 even, x2 odd, x3
even, and so on.

The matrix B used in the previous section is not the most
convenient choice to carry out the general calculation. We
slightly modify the entries of B labeled by the monomer
positions: we set the diagonal elements to 0 and connect the
monomers by pairs by setting B�xi,1�,�xi+1,1�=1=−B�xi+1,1�,�xi,1�
for all i odd. It means that the restriction of K+B to the
monomer sites is not the identity matrix like in the previous
section, but a direct sum of 2�2 blocks equal to � 0

−1
1
0 �,

whose determinant remains equal to 1. The other off-
diagonal elements of B are as before.

This choice ensures that B is also antisymmetric and such
that Bij =0 if i− j has coordinates of equal parities. Since the
matrix K−1 has the same property �see �3.7��, it follows that
�I+K−1B�ij =0 if i− j has coordinates of opposite parities. By
an appropriate ordering of the site indices, I+K−1B can thus
be brought to a block-diagonal form.

The determinant to be computed has dimension 8n since
B has rank 8n: there are 2n monomer sites, and each of them
has three nearest neighbors. We label the sites as in Fig. 2,
using two types of roman indices a and a� , each type of label
taking its values in �1,2 , . . . ,4n	. The labeling is such that
the differences a−b or a� −b� have coordinates of equal pari-
ties and that differences a−b� or a� −b of unlike sites have
coordinates of opposite parities. In this basis, the matrices B
and K−1 are off-diagonal, Bab=Bab=Kab

−1=Kab
−1=0, while the

matrix I+K−1B is block diagonal:

�I + K−1B�ij = ��I + K−1B�ab 0

0 �I + K−1B�ab
� . �4.1�

Moreover, the two diagonal blocks are closely related. As is
manifest in Fig. 2, the two types of sites are exchanged by a
mirror symmetry, under which the monomer coordinates and
the separation distances are transformed according to x�

→ x̃�=x2n+1−� and xk−x�→ x̃�− x̃k. It follows that the second
block depends on the separation distances x̃�− x̃k in the same
way the first block depends on xk−x�, or equivalently,

�I + K−1�xk − x��B�ab = �I + K−1�x̃� − x̃k�B�ab. �4.2�

As it turns out, the determinant of the first block will be
invariant under the substitution xk−x�→ x̃�− x̃k and therefore
equal to the determinant of the second block. Putting all
together, one obtains the correlations as

· · ·� � �

�

4n 1

4n− 1

4n − 2

x1 even

� � �

�

2 4n − 3

3

4

x2 odd

� � �

�

4n − 4 5

4n − 5

4n − 6

x3 even · · ·

� � �

�

4 4n− 3

3

2

x2n−1 even

� � �

�

4n − 2 1

4n − 1

4n

x2n odd

FIG. 2. Labeling of the 8n sites involved in the calculation of the determinant. The solid circles represent the positions of the monomers
�x1 ,x2 , . . .�, all located on the boundary, the open circles their nearest neighbors.
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C�x1,x2, . . . ,x2n� = �det�I + K−1B�ij = �det�I + K−1B�ab� .

�4.3�

We finish the proof by showing that this last determinant
reduces, in the scaling limit, to the fermionic 2n-point func-
tion �3.16�.

We start by grouping the 4n sites a by 4, each group
receiving a label I, between 1 and n: I=1 corresponds to the
first four sites �1,2,3,4	, I=2 to the next four sites �5,6,7,8	,
and so on. Accordingly we write the matrix �I+K−1B�ab
=AIJ in a block form, where all blocks AIJ have dimension 4.

Because the matrix B does not connect sites belonging to
different values of I, the diagonal blocks AII are all given in
terms of a single matrix function A1, as are the off-diagonal
blocks in terms of a second matrix A2. The entries of AII only
depend on the distance x2I−1,2I, so that A1 depends on a single
variable AII=A1�x2I−1,2I�; likewise, the off-diagonal block AIJ
only depends on the two distances x2I−1,2J and x2I,2J, so that
AIJ=A2�x2I−1,2J ;x2I,2J� �to see that the other two distances
x2I−1,2J−1 and x2I,2J−1 do not enter in A2 requires a simple
calculation, illustrated below�. Therefore the matrix of which
we need to compute the determinant has the form

�I + K−1B�ab = AIJ

=

A1�x12� A2�x14;x24� A2�x16;x26� ¯

A2�x32;x42� A1�x34� A2�x36;x46� ¯

A2�x52;x62� A2�x54;x64� A1�x56� ¯

] ] ] �

� .

�4.4�

Our next task is to compute the asymptotic value of the
blocks A1 and A2, when the distances become large. This is
straightforward as soon as one is familiar with the notations
and with the form of B. Suppose that we want to compute the
�1,1� element of the off-diagonal block AI=1,J=n correspond-
ing to the two subsets of sites fully displayed in Fig. 2. The
first labels in I=1 and J=n are, respectively, the sites 1 and
4n−3. One finds

�AI=1,J=n��1,1� = �I + K−1B�1,4n−3

= K1,1�
−1 B1� ,4n−3 + K1,2�

−1 B2� ,4n−3 + K1,3�
−1 B3� ,4n−3

+ K1,4�
−1 B4� ,4n−3

= − K1,1�
−1 − K1,2�

−1 − K1,3�
−1 + K1,4�

−1

= − K�x1,1�,�x2n,1�
−1 − K�x1,1�,�x2n−1+1,1�

−1

− K�x1,1�,�x2n−1,2�
−1 + K�x1,1�,�x2n−1−1,1�

−1 . �4.5�

The last three terms cancel because they are equal to
�K−1K��x1,1�,�x2n−1,1�=0, leaving, for x
x1−x2n,

�AI=1,J=n�11 = − K�x1,1�,�x2n,1�
−1 = − Gcl� x−1

2 ;1,1� + Gcl� x+1
2 ;1,1�

= − G� x−1
2 ,0� − G� x−1

2 ,1� + G� x+1
2 ,0� + G� x+1

2 ,1�

= −
2

	x
+ ¯ �4.6�

for large x by using �3.11�. Similar calculations for the other
entries and for the diagonal blocks yield the matrices A1 and
A2 explicitly as

A1�x� =

−

2

	x

2

	x

2

	x
−

2

	x

1

	
1 −

1

	
−

1

	

1

	

1 −
2

	
− 1 +

2

	

2

	
1 −

2

	

−
1

	

1

	

1

	
1 −

1

	

� + ¯ ,

A2�x;y� =

−

2

	x

2

	x

2

	x
−

2

	x

−
2

	y

2

	y

2

	y
−

2

	y

0 0 0 0

−
2

	y

2

	y

2

	y
−

2

	y

� + ¯ , �4.7�

where the ellipses represent lower-order terms in x or y.
A first observation is that the full matrix AIJ contains ex-

actly n lines with all their elements of order −1 in the dis-
tances x�m, while all the other 3n lines contain elements of
order 0 in these variables, coming from the A1 blocks. From
this, it follows that the dominant term in the determinant has
order −n in the distances. Anticipating that the coefficient of
this term does not vanish so that the scaling dimension of the
2n correlator is n, we may neglect the y dependence in the
A2-blocks and use the simplified matrix

A2�x� = A2�x;�� =
−
2

	x

2

	x

2

	x
−

2

	x

0 0 0 0

0 0 0 0

0 0 0 0
� . �4.8�

At this stage, the full matrix has the form

�I + K−1B�ab = AIJ =

A1�x12� A2�x14� A2�x16� ¯

A2�x32� A1�x34� A2�x36� ¯

A2�x52� A2�x54� A1�x56� ¯

] ] ] �

� .

�4.9�

It has n block columns, each formed of four columns. Within
each block column, we uniformly add the first column to the
second and third ones, and subtract it from the fourth one.
This column operation does not change the value of the de-
terminant and can be done at the level of the small matrices
A1 and A2. Doing this recasts the determinant into the form
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det�I + K−1B�ab = det

⎝
⎜
⎜
⎜
⎛−

2

	x12
0 0 0 −

2

	x14
0 0 0 −

2

	x16
0 0 0 ¯

1

	
1 0 0 0 0 0 0 0 0 0 0 ¯

1 −
2

	
0 1 0 0 0 0 0 0 0 0 0 ¯

−
1

	
0 0 1 0 0 0 0 0 0 0 0 ¯

−
2

	x32
0 0 0 −

2

	x34
0 0 0 −

2

	x36
0 0 0 ¯

0 0 0 0
1

	
1 0 0 0 0 0 0 ¯

0 0 0 0 1 −
2

	
0 1 0 0 0 0 0 ¯

0 0 0 0 −
1

	
0 0 1 0 0 0 0 ¯

−
2

	x52
0 0 0 −

2

	x54
0 0 0 −

2

	x56
0 0 0 ¯

0 0 0 0 0 0 0 0
1

	
1 0 0 ¯

0 0 0 0 0 0 0 0 1 −
2

	
0 1 0 ¯

0 0 0 0 0 0 0 0 −
1

	
0 0 1 ¯

] ] ] ] ] ] ] ] ] ] ] ] �

⎠
⎟
⎟
⎟
⎞

. �4.10�

It clearly factorizes into the product of two determinants.
One has order 3n, made of all rows and columns except the
1st, 5th, 9th, ..., and is equal to 1, while the other contains the
remaining rows and columns. We therefore obtain

lim
scaling

C�x1, . . . ,x2n� = lim
scaling

�det�I + K−1B�ab�

= �− 2

	
�n

det� 1

x2i−1 − x2j
�

1
i,j
n

.

�4.11�

This last form, a Cauchy determinant, can be evaluated ex-
plicitly �see, for instance, �21��,

lim
scaling

C�x1, . . . ,x2n�

= �− 2

	
�n�1
i�j
n

�x2i−1 − x2j−1��x2j − x2i�

�1
i,j
n
�x2i−1 − x2j�

,

�4.12�

and exactly reproduces the free fermion correlator �3.16�.

We complete the proof by showing that all the correlators
which do not contain an equal number of even and odd
monomers vanish identically. Without loss of generality, one
may assume that in addition to the 2n monomers at alterna-
tively even and odd positions �xi ,1�, there are M monomers,
all located at either even or at odd positions �yi ,1�. We con-
sider the case where the M additional monomers are on even
sites, the other case being similar. We assume x1�x2� ¯

�x2n�y1� ¯ �yM.
The matrix �I+K−1B� now has dimension 8n+4M: the

first 8n labels will be as above, 4n indices a and 4n indices
a� . The other 4M sites will be ordered in a more natural way:
first monomer at y1, its left, upper, and right neighbors, and
so on for the others. The restriction of B to the 8n sites is
kept as above, with oriented bonds between x monomers. As
M can be odd, we take on the other 4M sites a direct sum of
B1�yi� matrices, written in �3.8�.

Let us now compute the n+M rows of �I+K−1B� labeled
by the even x monomers �corresponding to x1 ,x3 , . . .� and by
the y monomers �in the case where all yi are odd, one would
look instead at the odd x monomers�. A straightforward cal-
culation shows that the rows labeled by the even monomers
�xi ,1�, i odd, are equal to
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�I + K−1B��xi,1�,· = �− K�xi,1�,�x2,1�
−1 ,K�xi,1�,�x2,1�

−1 ,K�xi,1�,�x2,1�
−1 ,

− K�xi,1�,�x2,1�
−1 ;�

− K�xi,1�,�x4,1�
−1 ,K�xi,1�,�x4,1�

−1 ,K�xi,1�,�x4,1�
−1 ,

− K�xi,1�,�x4,1�
−1 ; . . . ;�

− K�xi,1�,�x2n,1�
−1 ,K�xi,1�,�x2n,1�

−1 ,K�xi,1�,�x2n,1�
−1 ,

− K�xi,1�,�x2n,1�
−1 ;0, . . . ,0;0, . . . ,0� . �4.13�

The first 4n entries are nonzero, proportional to a matrix
element of K−1; then, there is a group of 4n zeros corre-
sponding to the underlined indices and another group of ze-
ros corresponding to the last 4M sites.

Because all yi are even, the first 8n entries of the rows
�I+K−1B�yi,·

are exactly given by the formula �4.13� where
one simply replaces xi by yi. Moreover, one may check that
the last 4M entries are also zero, so that one obtains the
simple result that

��I + K−1B��yi,1�,· = �I + K−1B��xi,1�,·�xi→yi
. �4.14�

By column additions and subtractions, one may bring these
rows to the form where only n entries are nonzero, for in-
stance,

�I + K−1B��xi,1�,· = �− K�xi,1�,�x2,1�
−1 ,0,0,0;− K�xi,1�,�x4,1�

−1 ,0,0,0;

− K�xi,1�,�x2n,1�
−1 ,0,0,0;��0, . . . ,0;0, . . . ,0� ,

�4.15�

and similarly for �I+K−1B��yi,1�,·. In this form, the full matrix,
which has the same determinant as the original one, contains
n+M rows which are vectors in an Rn vector subspace. Con-
sequently, it has at least M left eigenvectors with zero eigen-
value; therefore, its determinant vanishes identically and so
does the corresponding correlator.

V. STRING OF MONOMERS

Up to here, we have considered isolated monomers, far
apart from each other and lying on the boundary of the upper
half-plane. We have shown that the correlation functions for
such monomer configurations can be understood, in the scal-
ing limit, as free-fermion correlators in a conformal field
theory with central charge c=1. For completeness, we briefly
discuss a different situation and, in some sense, opposite:
namely, the case where the monomers form a compact clus-
ter of consecutive sites. So we consider 2n monomers on
consecutive boundary sites and ask for the corresponding
correlation C2n, defined as before as the ratio of the partition
function with the 2n monomers to the partition function with
no monomer.

Since the 2n monomers can be covered in a unique way
by n dimers, we may think of the dimer configurations in the
presence of the monomers as close-packed dimer configura-
tions with a fixed string of n consecutive dimers, all oriented
along the boundary. Being now formulated as a pure dimer
problem, with a prescribed boundary condition on an interval

of length 2n, the Temperley correspondence �22� �see also
�23�� with arrow configurations, or equivalently spanning
trees, can be used.

Given a dimer configuration, an associated configuration
of arrows is defined on the odd-odd sublattice Lodd �it con-
tains a half of the boundary sites of the upper-half plane�: if
a dimer touches a site of Lodd, one draws an arrow from that
site toward its nearest neighbor in Lodd in the direction of the
dimer; those dimers which do not touch sites of Lodd are
uniquely fixed once the dimers that do touch Lodd are given.
The so-obtained arrow configuration has the property that it
cannot form closed loops, because a loop would encircle an
odd number of sites of the original lattice, which therefore
could not be fully covered by dimers. So the arrow configu-
ration defines a spanning tree on Lodd.

In this correspondence, a prescribed string of n consecu-
tive dimers on the boundary translates into a string of n
consecutive arrows, all pointing to the left or to the right
along the boundary. Elsewhere on the boundary, arrows are
free to point in any of the three available directions �with the
only constraint that the full arrow configuration cannot con-
tain loops�. This problem of arrows with a fixed string of
aligned arrows on the boundary has been recently examined
in �24� in the context of the Abelian sandpile model. It has
been found that the correlation function C2n behaves asymp-
totically as

C2n � An−1/4e−2nG/	, n large, �5.1�

where G=0.915965 is the Catalan constant and A is a nu-
merical constant. The exponential decay is expected and due
to the defect of entropy of the n boundary sites which have
their arrow frozen. On the other hand, the power law n−1/4

has been understood, within conformal field theory, as the
correlator of two boundary-condition-changing fields �and an
extra dimension-0 field corresponding to the insertion of dis-
sipation; see �25��. One of these two fields changes the free-
arrow boundary condition into, say, the right-arrow boundary
condition and has dimension −1 /8; the other changes the
right-arrow boundary condition back into the free-arrow
boundary condition and has dimension 3/8. The two dimen-
sions add up to 1/4 and account for the exponent in �5.1�.

Note that these dimensions have been obtained in �24� in
the context of the sandpile model �equivalently spanning
trees�, known to correspond to a �logarithmic� conformal
field theory with central charge c=−2. However, as discussed
in the Introduction, various results, including those of the
present article, point to a description of the general
monomer-dimer problem in terms of a conformal field theory
with central charge c=1, of which the theory with c=−2
would appear as a subtheory accounting for the dimer de-
grees of freedom. In the c=1 setting, the above power law is
presumably interpreted as a two-point function of fields with
dimension 1/8.
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